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Abstract

We give a, simple factorization of an arbitrary hermitian, positive deti,_it,.

matrix in which the factors are well-conditioned, hermitian, and positive

definite. In fact, given knowl(xlge of the exl, rcme eigcnva:lues of the original

matrix A, we can achieve an optimal iml)rovement , making the condition

numbers of each of the two factors eqmd to the square root of the conditiol,

number of A.

_vVe apply !_his technique to the solution of hermitian, positive definite

Toeplitz systems. Large linear systems with hermitian, positive definite

*Supported by NSF Grant CCR-8805782 and PSC-CUNY A_vard 668541
_Supported by ONR Contract number N00014 86-K-0610, ARO Grant DAAL03-86-

K-0112, and by Cooperative Agreement NCC2-a87 between NASA and the Universi',i<:

Space Research Association.

t On leave from l{e.nsselaer Polyt.ech n ic I nstit.u tc



Toeplitz matrices arise in some signal processing applications. We give a

stable fast algorithm for solving these systems that is based on the precondi-

tioned conjugate gradient method. The algorithm exploits Tocplitz structure

to reduce the cost of an iteration to O(n log n) by applying the fasl Fourier

Transform to compute matrix-vector products. We use our matrix factoriza-

tlon as a preconditioner,

1 Introduction

We give a simple factorization of an arbitrary hermitian, positive definite

matrix A in which the factors are hermitian, positive definite, and are sub-

stantially better conditioned than the original matrix A. In fact, given knowl-

edge of the extreme eigenvalues of A, we can achieve an optimal improve-

ment, making tile condition numbers of each of the two factors equal to the

square root of the condition number of A. The factorization is of the form

A = (A + #I)(I - It(A + ltl)-_). We discuss the optimum choice of t_ in

Section 3.

Consider the linear system Ax = b where A is an n x n hermitian, positive

definite Toeplitz matrix, A = [a_j] = [aj_] = [al__Jl 1. Several direct methods

for solving such a system using O(n 2) arithmetic operations are known [18],

[14], [12], [3]. In addition, some newer methods that take O(n log 2 n) opera-

tions have been developed [4], [5], [13], ill], [2]. The method of Gragg and

Ammar, for example, requires 8n log 2 n real arithmetic operations for a real

Toeplitz system. Stability of these methods is discussed by Bunch [6].

Recently, some new attention has b¢_n given to the preconditioned con-

jugate gradient n mthod as a Toeplitz solver. The motivation is that a single

iteration of this method can be implemented, using the fast Fourier Trans-

form, at a cost of O(n log n) arithmetic operations. The hope is that with

suitable preconditioners, the number of conjugate gradient iterations can be

made small enough to make the method practical. One approach has been

to use circulant approximations to A as preeonditioners [16], [7]. These work

remarkably well for some Toeplitz matrices (finite sections of a singly in-

finite matrix Aoo = [a__,] for which Ek=0_ ak < oo) [8], [17]. As we shall

show in Section 4, however, they are not always effective. Here we use in-

stead the general preconditioning strategy discussed above. This strategy is

most useful when A is Toeplitz, for in this case, the factor, (A -4-ttI), is still
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Toeplitz. Conjugategradient iterations are thereforeinexpensive.Moreover
its inverse has a representationas the differencebetween two products of
triangular Toeplitz matrices (the Gohberg-Semencul formula) or a triangu-

lar Toeplitz matrix and a circulant matrix (the Ammar-Gader formula); this

allows iteration with the other factor, (I - #(A +/tI)-Z) to be carried out

cheaply.

In the next section we give a general outline of our method. In Section 3

we give the details of this method, providing an optimum shift parameter FL.

We compare it with several competitors in Section 4.

1.1 Notation

For z C C,z" denotes the complex conjugate of z. For a complex matrix

A, A H denotes the conjugate transpose of A, and A(A) denotes the set of

eigenvalues of the square matrix A. A matrix A is hermitian, positive definite

(hereafter h.p.d.) ifA = A n and for alla E A(A),a > 0. Let A beh.p.d.

and let al be the largest and a,, the smallest of A's eigenvalues. Then

a(A) = al/an is called the (spectral) condition number of A.

2 A condition-improving matrix factoriza-
tion

Let A be a given h.p.d, matrix. Let p E R. Let

B - A + _I (1)

and

C = I- #B-'. (2)

Lemma 1 Let A be a given h.p.d, matrix. Let B and C be given by ([) aud

(2). Then A = BC = CB. If -t_ is not an eigenvalue of A then both B and
C have inverses and A -1 = C-aB -I = B-1C -a.

Proof:

obvious.

]emma.

A = B - pI = B(I - #B -1) = (1 - #B-_)B. Invertibility of/3 is

And C = B-1A must therefore be invertible too. This proves the
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Let the eigenvalues of A, B, and C be given by

{_, <....<_ _,} = A(A),

{_. _<... _<_,} _(B),

{7. _<"-< _,} = a(C).

By (1) and (2) we havc

(a)
(4)

Lemma 2 Lct B and C be given by (1) and (2).

orB and C arc given bg

,_(_) -
an + I*

and

Thus, .for all tt > O,

Then the condition numbers

(5)

cq(a,,+ St) (6)
,_(C)- _,(_, + St).

n(A)--- x(B)_(C). (r)

Proof: Immediate.

Lemma 3 Let # = _v/-dTdT.Then _( B) = n(C) = _.

Proof: Immediate.

In most cases, this factorization does not lead to a reduction in the cost of

inverting A or of solving Ax = b. For if we employ an algorithm for inverting

B and C, such as Gaussian elimination, that is insensitive to condition num-

ber, we might as well have used it on A; if the cost of this algorithm depends

on log _, as it does for Newton's method (see, for example, [15]) then we

have gained nothing. If the cost exceeds log n, as it does for most iterative

methods, we may have gained something. But iteration to solve Cx = z is

expensive because we need to solve a system with B at each iteration. Some

form of inner/outer iteration method could be used to reduce this cost.



There is a case,however,in which we cansolvemany systemswith B in

little more time than it takes to solve one. When A is an h.p.d. Toeplitz

matrix, then so is B. Then we may use the Gohberg-Semcncul formula, or

a recent variant, the Ammar-Gader formula, to represent B -1. This reduces

the cost of one iteration of CG for C to O(n log n).

3 A Fast Toeplitz Solver

Let us apply the matrix factorization of the previous section to the solution

of a linear system

Ax = t, (8)

where A = [a_j] is an n x n h.p.d. Toeplitz matrix, aij = aji = alj_i j. We

suppose that the extremal eigenvalues of A have been estimated (more on

this later on, in Section 5). In this case, the matrix B is also h.p.d, and

Toeplitz, is completely defined by its first column, and its inverse can be

represented as

B -1 = LIL_ - L_L_ t

where L1 and L2 are lower triangular Toeplitz matrices whose elements de-

pend only on the first column of B -1 ([9], [18]). Recently, an alternative rep-

resentation by Toeplitz-circulant products was given by .A,mmar and Cadet

[1]:
13 -1 = L1E T - L2E (9)

where Ll and L2 are again lower triangular Toeplitz, and E is circulant.

These factors are again functions only of the first column of B-1.

This leads to the following algorithm:

Algorithm 1:

Input: An h.p.d. Toeplitz matrix A, a vector b, and a shift parameter p.

Output: A-lb.

Method:

(Step 1) Solve By = e,, where el = (1,0,...,0) H. Construct L1, L2, E

satisfying (9).

(Step 2) Solve Bz = b.

(Step 3) Solve Cx = z. Return x.
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We solve tile linear systems at Steps 1 and 3 of Algorithm 1 by the

conjugate gradient (CG) method [10]. At Step 2, we use the representation

(9) constructed at Step l; there is no iteration and only FFTs of n-vectors

are required.

In the CG method, each iteration costs 5n flops and one matrix-vector

product. For the Toeplitz matrix B in Steps 1 and 2, we compute the matrix

vector product Bu by a standard technique of embedding B in a circulant

matrix of order 2n and appending n zeros to u; a circulant matrix times a

vector is a convolution, for which the fast Fourier Transform is used:

;, = 01);
_5 = _.,/);

,, =
Bu = v(1 :n);

Here 0 represents the zero vector of order n; Fk and Wk are the forward and

inverse discrete Fourier Transform operators on C k, the operator .* represents

elementwise multiplication of two vectors, v(1 : n) is the first n components

of v, and

-_- /7_2n([bo, bll. ,bii'l,O,b;_l,...,bl] ).

Note that/) is real and this reduces the cost of the elementwise multiplica-

tion. The cost of a CG iteration with B is therefore

Cost(B) : 4@(n)

where ¢(n) is tile cost of an n-point FFT. (This does not include the cost of

computing/), which is computed once and for all.)

For Step 3 above, we use CG, too. We require tile product Cu and hence

also B-Xu at every iteration. Using the Ammar-Gader formula, this cost may

be reduced to

Cost(C) = 7(I)(n)

(see [1]).

The alternative of using B as a preconditioner in the preconditioned CG

method is less attractive than Algorithm 1. We would in effect be solving

Cx = B-lb



by the conjugate gradient method. Thus, we have an equivalent of Steps

2 and 3 above. But at each iteration, we would have to form Cp for some

vector p as B-lAp. The cost of each iteration would therefore be ll_(r_)

rather than 7_(n) as it is in our implementation.

3.1 The Optimal Shift

The choice # = x/_a_ is not optimal. Since each iteration of CG with the

matrix C costs roughly 1.75 times as much as a CG step with B, we would

be better off to choose # to make C better conditioned at tile expense of

worsening the condition number of B. It would be reasonable to choose # lo

minimize the estimate of the total work given by

+ 7nc)¢(n),

where nB is the number of CG iterations at Step 1 above, nc tile number of

CG iterations at Step 3 above. According to [10], we may model these by

and

ns = F_/_ (lo)

nc = f @_(C) (11)

with F a constant. Then, by Lemma 2,

n_nc = F2_-_ - M = const.

Therefore, for any constant K (and motivated by the estimate above we may

think of K = 7/4),

f(nc) -- nB + Knc

M
= _ + Knc

rtc

is minimized at

nc

nB

M

nc

(12)



Now wewant to choosethe best shift parmeter #. In view of (10), (11), and
(12) wechoose# to solve

_-(B)= i_%(c), (13)

which becomes, using (5) and (6),

_.(_[ + 2._1 + v')= K=-,(-'. + 2.4. + #9.

Now change variables from t, to m, where # = m _x/-&'7"_'_;then m satisfies

../2( K2t.2¢, __ C_rt ) JF ?Tt(2( K 2 -- 1) _X/'_'_n ) -1-- (I(20grt --O_1) = 0

or, dividing by an > 0, with _ =- n(A) = alia,,,

rn2(I(2g - 1) 4 m(2(K 2- 1)v/-_) + (K 2 - x) =0.

The roots are

-(K = - 1)v/-_ + K(,_- 1) (14)
no,+ = K2 e; - 1

Note that rn+ _> 0only when __> K 2. Ifx < K 2 there is no possibi]ityof

satisfying (13) anyway, in view of (7). Thus, we assume that x >_ 1( 2 and

that # = m+ _x/'ffT"_ > 0. Fol _ > K 2 the root m+ is monotone increasing

with g and is asymptotic to 1/K.

Lemma 4 Let/, be given by rn_ where m = rn+ (see (14) above). Then

t-(U) : K_, (1.5)

_(C) = K-'_. (16)

Proof: According to the derivation of (14), the relation (13) holds. Then,

by (7),

= _(t_).(c)
= (_(R)/I_-)_,

whence (15) follows. And (16) follows from (13) and (15). This proves the
lemma.



Now,assume(10) and (11) and choose/_= m+v'_C_ so that (13) holds.

In our application, K = t.75. The total cost is then

= 4(nB + Knc)_(n)

= 4(2nB)@(n)

=

= 8vqT '/4F (n)
=

(4rib + 7nc)_(n)

(17)

For comparison, let n,co be the number of iterations required by CG for A.

We assume the model

Coat(CG) = 4nca¢(n) = 4F¢(n)v/_A) • (18)

Compared with (18) we can see that the new method is an improvement for

_; > 49.

3.2 Recursiv:e Preconditioning

The factorization A = BC can be used recursively. In particular, let us

consider solving the equation By = el at Step I of Algorithm I by using this

preconditioned conjugate gradient solver. We now solve for two optimum

shift paramemters; g_, which we use in solving for y in Step 1, is given by

the theory above in which we substitute ¢_, 5,,, and _(B) for C_l,C_, and

t_(A). The other,/l, which we use to define B, is now chosen to minimize the

sum of the cost of Step 1, which by (17) is

4v/qn( B) '14 F_(n) ,

and the cost of Step 3, which is

7n(C)'/2F@(n)

subject to (7). The solution is to take

K(C) = (16h:(A)49 ]'_1/3



and

=
Making the substitution It = m _/-d-]'_ as before leads to a cubic in m that

has a positive root for all _¢> 49/16. The overall work becomes

9 (_) 2/3 F_(n)_(A)1/6 .

This is better that 4F(P(n)tc(A) 1/2 (compare (18)) for s:(A) > 140 arid better

than 4v/-']FC,(n)(K(.4)) '/4 (compare (17)) for _(A) > 3222.

4 Numerical Results and Conclusions

First, we used Algorithm 1 to solve the system (8) where A was as follows.

We generated a real time series

s_. = 2sin(x_) + sin(4xk + _r/6) + u_

where tile n sample points xk were uniformly spaced in [0, 2_-) and vk was a

Gaussian random variable (white noise) with mean zero and variance (power)

0"2. Next, we took aj to be the autocorrelation of {sk} with lag j, that is,

n-1

aj _--- _ 5kNk+ j

k=0 = :

where the index k + j was taken modulo n.

To choose/z, we used tt,_ Lanczos algorithm to approximately tridiago-

nalize A, then con_l)uted the extreme eigenvalues ri and rm of the resulting

m x m symmetric tridiagonal matrix. We used the approximations

Tables 1 and 2 give experimental results for a = 10 and a = 1. In each

table we list the number of sample points, n; the number of CG iterations

at Step 1 of Algorithm 1, nR; the number of CG iterations at Step 3 of
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n

16

64

256

1024

4096

nB

f7

39

50

70

59

nc

7

13

18

23

38

7 nnB+_ C

29

62

82

110

126

nCG

17

46

73

12,1

162

Ilax - yli_

1.8(-12)

9.7(-12)
1.2(-11)

5.3(-11)

1.2(-10)

Ilax_c-vll
1.2613)
6.9(-12)
8.1(-12)
2.o(-_1)
6.1(-11)

Table 1: Results for _7 = 10.

rt

f6
64

256

1024

4096

rt B

17

41

49

50

35

nc
7

np+ -_nc nCG IIA_- Vll, llAxc_-,_ll
12

32

47

75

217

38

97

131

i81

415

18

80

156

253

540

2.s(-12)
6.6(-12)
2.s(-_a)
s.7(-_1)
1.7(-9)

1.9(-13)
7.7(-12)
1.a(-t t )

2.7(-_1)

Table 2: Results for cr = I .
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7t

16

64

256

i024

4096

4096

nB

18

51

64

67

46

109

_c

12

24

34

54

J69

73

7
nB + -_nc

39

93

124

162

342

237

nCG

18

80

156

253

540

540

IIAx- YII 
7.7(-13)
9.0(-12)
2.9(-11)
7.9(-11)
1.9(-10)
4.0(-9)

5

5

5

5

5

10

Table 3: Results for o = 1. Shift # = rm/£

Algorithm 1, nc; the equivalent number of CG iterations taken by Algorithm
T

1, nB+ _nc; the number of iterations taken by unpreconditioned CG, nca;

the residuals achieved by CG and by Algorithm 1. The number of Lanczos

iterations that were used to estimate eigenvalues varied from 10 to 40.

In our experience, TI is extremely accurate, but rm may be several times

larger than (_,_. We also found that an underestimate of a,,_, which results

in a smaller # than we would take given perfect knowIedge and hence a bias

in favor of more iterations aI, Step 1 and fewer at Step 3, is preferable to an

overestimate. Thus, we replaced our estimate of c_,, by

rm/5

where 6 > 1 is a parameter of the algorithm. Results are given in Table 3 for

the same (:lass of matrices as above, with a = 1. Note that with this better

estimate of the optimal shift, we are doing far better than with unprecondi-

tioned CG.

Strang [16] and Chan [7] have advocated circulant preconditioners. Strang

takes the circulant C = [c(j_ Omo_j,,] with ck = ak, k = 0,...,rn where

m = n/2. The other diagonals of C are determined by symmetry and the

requirement that C be circulant. Thus C coincides with A in the central

half of the diagonals. Chan's choice is to take C to minimize IIA - CHF , the

Frobenius norm of the difference, among all circulaj)t C. For this, one takes

ck = (ka,__k + (n - k)ak)/n. The cost of each iteration is 1.5 times greater

than the cost of a CG iteration, since solving the circu]ant preconditioning

system at each step requires both a forward and an inverse FFT of length n.
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n 1.5 ns 1.5 nc

16 33 30

64 122 114

256 662 293

Table 4: Results for Chan and Strang preconditioners, o" =- 1.

We used these techniques for the model problem above, with c_ = 1. q'he

results, in Table 4, show that neither technique is competitive with ours

for this problem. For other problems, in particular when ak decays with

increasing k, we have found them to be superior, as has been predicted by

Strang, Chan, and Edelman ([17]).

5 Conclusions

We have demonstrated a preconditioner for Toeplitz systems that achieves a

significant speedup when compared with unpreconditioned conjugate gradi-

ent method and, for certain problems, is considerably better than other previ-

ously proposed preconditioners. The asymptotic complexity is O(n log n_ 1/4)

where _; is the condition number of the problem the exponent I/4 may be

made smaller at the expense of an increase in the constant factor by applying

our technique recursively. Compared with the complexity (8n log 2 n) of other

superfast methods, we can see that for large, well-conditioned problems the

present technique may be quite useful.
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